

TBC-LTAR5V Series Closed Loop Mode Hall Effect Current Sensor

TBC-LTAR5V Series current sensor is a closed loop device based on the measuring principle of the hall effect, with a galvanic isolation between primary and secondary circuit, it is used for precision measurement of DC, AC and pulse current.

Electrical data (Ta=25°C±5°C)

Type Parameter	TBC50LTAR5V	TBC100LTAR5V	TBC200LTAR5V	TBC300LTAR5V	TBC400LTAR5V	Unit
Rated input Ipn)	±50	±100	±200	±300	±400	А
Measure range (Ip)	±150	±300	±600	±600	±600	А
Turns ratio (Np/Ns)	1:1000	1:2000	1:2000	1:3000	1:3000	Т
Secondary resister	30	20	20	46	46	Ω
Rated secondary output	±50	±50	±100	±100	±133.3	mA
Rated output	±5±0.2%					٧
Supply voltage	±12~±15					V
Power consumption	≤25+IpX(Np/Ns)					mA
Zero voltage	@Ip=0				mV	
Zero Offset drift	≤±0.75 (Typ) ,≤±2.0 (Max)					mV/°C
Output drift	≤±0.25 (Typ) ,≤±0.75 (Max)					mV/°C
Response time	@100A/μS, 10%-90% <1.0				μs	
Linearity	@lp=0-±lpn ≤0.1				%FS	
Galvanic isolation	@ 50Hz, AC,1min 6				KV	
di/dt accurately followed	> 100					A/μs
Bandwidt h	@-3dB DC-200					KHz

TBC-LTAR5V Series Closed Loop Mode Hall Effect Current Sensor

Applications

- Variable speed drives
- Welding machine
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Electrochemical

Mechanical dimension (for reference only)

Remarks:

- 1. All dimensions are in mm.
- 2. General tolerance ±1mm

Directions for use

- 1. Is will be in a forward direction when the Ip flows according to the direction of the arrowhead.
- 2. The primary conductor should be≤100°C.

TBC-LTAR5V Series Closed Loop Mode Hall Effect Current Sensor

- 3. The dynamic performance (di/dt and the response time) is the best when the primary hole is fully filled with the bus bar.
- 4. The primary turns should be at the top of the sensor for the best magnetic coupling.

Standards

UL94-V0.

EN60947-1:2004

IEC60950-1:2001

EN50178:1998

SJ 20790-2000

General data						
	Value	Unit	Symbol			
Operating temperature	-40 to +85	°C	TA			
Storage temperature	-40 to +125	°C	TS			
Mass(approx)	75	a	M			

Characteristics chart

Pulse current signal response characteristic

Effects of impulse noise

