

TBC-BTR Series Closed Loop Mode Hall Effect Current Sensor

TBC- BTR series current sensor is a closed loop device based on the measuring principle of the hall effect and null balance method, with a galvanic isolation between primary and secondary circuit. It provides accurate electronic measurement of DC, AC or pulsed currents.

Electrical data (Ta=25°C±5°C)

Type Parameter	TBC50BTR	TBC100BTR	TBC150BTR	TBC200BTR	TBC300BTR	Unit
Rated input (lpn)	±50	±100	±150	±200	±300	А
Measure range (lp)	±150 (±18V,90Ω)	±300 (±18V,30Ω)	±450 (±18V,22Ω)	±600 (±18V, 20Ω)	±900 (±18V,5Ω)	А
Turns ratio (Np/Ns)	1:1000	1:1000	1:1500	1:2000	1:3000	Т
Rated output (Isn)	50±0.5%	100±0.5%	100±0.5%	100±0.5%	100±0.5%	mA
Coil resister @70℃	20	20	30	30	50	Ω
Measure resister	5~100					Ω
Supply voltage	±12 ~ ±18					V
Power consumption	≤20+IpX (Np/Ns)					mA
Zero offset	@lp=0				mA	
Zero drift	≤±0.4				mA	
Linearity	@lp=0-±lpn ≤0.1				%FS	
Bandwidt h	@-3dB DC-200				KHz	
Response time	@100A/μS,10%- 9				μS	
Galvanic isolation	@ 50HZ, AC,1min			KV		

TBC-BTR Series Closed Loop Mode Hall Effect

Current Sensor

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Variable speed drives
- Power supplies for welding applications
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)

Mechanical dimension (for reference only)

Remarks:

- 1. All dimensions are in mm.
- 2. General tolerance ±1mm.

TBC-BTR Series Closed Loop Mode Hall Effect

Current Sensor

Directions for use

- 1. When measure current flows according to the direction of the arrowhead, Output terminal gets the same phase current
- 2. When the current will be measured goes through a sensor, the current will be measured at the output end. (Note: The false wiring may result in the damage of the sensor)
- 3. Custom design in the different rated input current and the output current are available.

Standards

UL94-V0.

EN60947-1:2004

IEC60950-1:2001

EN50178:1998

SJ 20790-2000

General data

	Value	Unit	Symbol
Operating temperature	-40 to +85	°C	TA
Storage temperature	-40 to +125	°C	TS
Mass(approx)	52	q	М

Characteristics chart

Pulse current signal response characteristic

Effects of impulse noise

