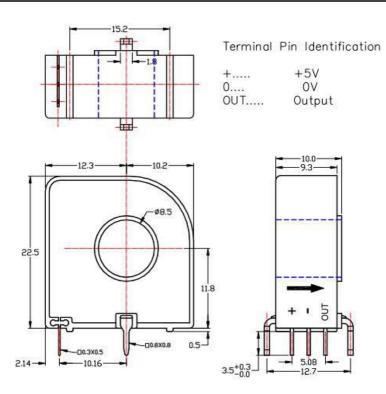


TBC-DT52 series current sensor is a closed loop device based on the measuring principle of the hall effect and null balance method, with a galvanic isolation between primary and secondary circuit. It provides accurate electronic measurement of DC, AC or pulsed currents.

Electrical data (Ta=25°C±5°C)

Type Parameter	TBC06DT52	TBC15DT52	TBC25DT52	TBC50DT52	Unit	
Rated input (lpn)	±6.0	±15	±25	±50	А	
Measure current range (Ip)	±6.6	±16.5	±27.5	±55	A	
Secondary Turns (Ns)	1200±1	1200±1	1000±1	1000±1	Т	
Internal resister	100±0.1%,	40±0.1% ,	20±0.1%,	10±0.1%,	Ω	
Rated output (Vsn)	@ lp=±lpn	±2.0±1	.0%		V	
Supply voltage	+5±5%				V	
Power consumption		≤20+1p,	/Ns		mA	
Zero voltage	@lp=0 2.5±0.8%	@lp=0	2.5±0.4%		V	
Zero drift		@lp=0 2.5±0.4% ≤±0.2				
Output drift		$+5\pm5\%$ $\leq 20+1p/Ns$ 2.5\pm0.8% @1p=0 2.5\pm0.4% $\leq \pm 0.2$ $\leq \pm 0.2$				
Linearity	@ lp=0-±lpn ≤0.1				%FS	
Total precision		%FS				
di/dt accurately followed	> 50 A/µS					
Response time	@ lp=lpn,50 A/µS,10	μS				
Bandwidth	@-3dB	KHz				
Galvanic isolation	@ 50HZ, AC,1min	KV				



Current Sensor

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Variable speed drives
- Power supplies for welding applications
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS

Mechanical dimension (for reference only)

Remarks :

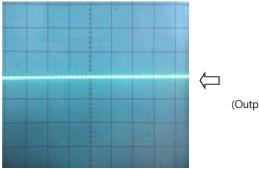
- 1. All dimensions are in mm.
- 2. General tolerance ±1mm

Directions for use

- 1. When the current will be measured goes through a sensor, the voltage will be measured at the output end. (Note: The false wiring may result in the damage of the sensor)
- 2. Custom design in the different rated input current and the output voltage are available.

Current Sensor

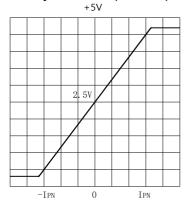
Standards

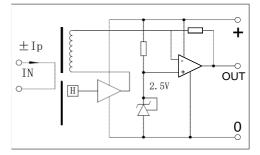

UL94-V0. EN60947-1:2004 IEC60950-1:2001 EN50178:1998 SJ 20790-2000

General data

	Value	Unit	Symbol
Operating temperature	-40 to +85	°C	ТА
Storage temperature	-40 to +125	°C	TS
Mass(approx)	9	g	М

Characteristics chart


Effects of impulse noise


(Output voltage)

Input Current-Output Voltage

PrimaryCurrent (Ip)--Output

Operation Principle

